

 1

OpenText® Documentum® D2FS REST Services

2

Abstract

This document is a guide to using OpenText Documentum D2FS REST Services to utilize the
D2 Configurations on Documentum Repositories.

Copyright © 2019 Open Text. All rights reserved. Trademarks owned by Open Text.

OpenText believes the information in this publication is accurate as of its publication date.
The information is subject to change without notice.

The information in this publication is provided “as is.” OpenText makes no representations
or warranties of any kind with respect to the information in this publication, and specifically
disclaims implied warranties of merchantability or fitness for a particular purpose.

The use, copying, and distribution of any OpenText software described in this publication
requires an applicable software license.

For the most up-to-date listing of OpenText product names, see OpenText Trademarks on
opentext.com.

3

Table of Contents

What’s changed in 24.2? .. 10

What’s changed in 23.4? .. 10

What’s changed in 23.2? .. 11

Overview ... 11

What are D2FS REST Services? .. 11

Consuming D2FS REST Services ... 12

Relationship with other Documentum Platform APIs ... 13

General REST Definitions .. 13

Common Definition - HTTP Headers ... 13

Common Definition – Query Parameters ... 14

HTTP Status Codes .. 14

Supported MIME Types... 14

HTTP Methods ... 14

Link Relations .. 15

Public Link Relation Registry ... 15

D2FS Link Relations .. 16

Explore the D2FS REST services .. 19

Common Tasks .. 19

Resources .. 19

Organization of Resource Reference Documentation .. 19

Profiles .. 19

URI Template... 19

Feed ... 20

Link Relation .. 20

Operations .. 20

Get Profiles-D2 .. 20

HTTP Method .. 20

Server Accepted Request Media Types .. 21

Query Parameters ... 21

Request Headers ... 21

Request Body .. 21

Response Headers ... 21

Supported Response Media Types .. 21

Response Status .. 21

4

Profile .. 22

URI Template... 22

Link Relation .. 22

Operations .. 22

Get a Profile .. 22

HTTP Method .. 22

Server Accepted Request Media Types .. 22

Query Parameters ... 22

Request Headers ... 23

Request Body .. 23

Response Headers ... 23

Supported Response Media Types .. 23

Response Status .. 23

Search Configurations .. 23

URI Template... 23

Feed ... 24

Link Relation .. 24

Operations .. 24

Get Search Configurations .. 24

HTTP Method .. 24

Server Accepted Request Media Types .. 25

Query Parameters ... 25

Request Headers ... 25

Request Body .. 25

Response Headers ... 25

Supported Response Media Types .. 25

Response Status .. 25

Search Configuration.. 26

URI Template... 26

Link Relation .. 26

Operations .. 26

Get a Search Config ... 26

HTTP Method .. 26

Server Accepted Request Media Types .. 26

Query Parameters ... 26

Request Headers ... 27

Request Body .. 27

Response Headers ... 27

5

Supported Response Media Types .. 27

Response Status .. 27

Types ... 27

URI Template... 27

Feed ... 28

Link Relation .. 28

Operations .. 28

Get Types-D2 ... 28

HTTP Method .. 28

Server Accepted Request Media Types .. 28

Query Parameters ... 29

Request Headers ... 29

Request Body .. 29

Response Headers ... 29

Supported Response Media Types .. 29

Response Status .. 29

Type .. 30

URI Template... 30

Link Relation .. 30

Operations .. 30

Get a Type ... 30

HTTP Method .. 30

Server Accepted Request Media Types .. 30

Query Parameters ... 30

Request Headers ... 31

Request Body .. 31

Response Headers ... 31

Supported Response Media Types .. 31

Response Status .. 31

Templates .. 31

URI Template... 31

Link Relation .. 32

Operations .. 32

Get Templates ... 32

HTTP Method .. 32

Server Accepted Request Media Types .. 32

Query Parameters ... 32

6

Request Headers ... 32

Request Body .. 32

Response Headers ... 32

Supported Response Media Types .. 33

Response Status .. 33

Create Object Content using Templates .. 33

URI Template... 33

This URI template will be replaced with /repositories/{repositoryName}/objects/{objectId}... 33

Operations .. 33

HTTP Method .. 33

Server Accepted Request Media Types .. 34

Query Parameters ... 34

Request Headers ... 34

Request Body .. 34

Response Headers ... 34

Supported Response Media Types .. 34

Response Status .. 34

Preview URLS ... 35

URI Template... 35

Link Relation .. 35

Operations .. 35

Get Preview Urls ... 35

HTTP Method .. 35

Server Accepted Request Media Types .. 35

Query Parameters ... 35

Request Headers ... 35

Request Body .. 36

Response Headers ... 36

Supported Response Media Types .. 36

Response Status .. 36

Examples ... 37

Object Creation .. 38

URI Template... 38

Link Relation .. 39

Operations .. 39

HTTP Method .. 39

Server Accepted Request Media Types .. 39

7

Query Parameters ... 39

Request Headers ... 39

Request Body .. 39

Examples ... 40

Object Versioning .. 40

URI Template... 41

Link Relation .. 41

Other Details ... 41

Sample Steps ... 41

Viewing profiles, types ... 41

Content creation .. 46

Create Object without content ... 46

Create Object with content... 49

C2-View & C2-Print .. 49

HTTP Method .. 50

Server Accepted Request Media Types .. 50

Query Parameters ... 50

HTTP Sample Request: .. 50

HTTP Method .. 51

Server Accepted Request Media Types .. 52

Query Parameters ... 52

HTTP Sample Request: .. 52

Parameters: ... 53

Parameters: ... 53

TaskNotes EndPoint ... 54

HTTP Method .. 54

Server Accepted Request Media Types .. 54

Sample request ... 54

Digital Signature .. 54

Zip and Download .. 59

Validate ... 59

Initialize zip and download ... 60

Status Check .. 60

Download content .. 60

Cancel Zip and download. ... 60

Zip and download clean up job ... 60

8

Advanced Search ... 61

Overview: .. 61

Search terminology: .. 61

Advanced search APIs: .. 62

View Permission .. 63

Permissions API ... 63

D2 Users Groups API ... 63

D2 Permissions set API .. 63

Workflow .. 64

All Workflows .. 64

All Workflow Status Summary .. 64

Relations ... 64

JDK-17 Spring 6 Migration .. 64

Security Changes .. 65

Login Logout Audits ... 65

Encrypted DM Ticket .. 66

D2 Column Preferences .. 66

D2 Options API... 67

User Preferences .. 67

Collections ... 67

Creation of a Collection: ... 68

Deleting a collection ... 68

Renaming a collection ... 69

Fetching collection complete information .. 69

Adding objects to an existing collection ... 70

Fetching list of collections ... 70

Share Collections ... 70

Fetching list of recipients to share collections with: .. 70

Fetching list of shared collections ... 71

Share or Unshare Collection: .. 71

Fetching shared details of collections: .. 71

Business Administration... 72

Get all checkout out objects. .. 72

Cancel checkout by Business Administrator ... 73

9

Aviator .. 73

Enable/Disable Aviator on Folders .. 73

Chat on Aviator enabled folder ... 73

Get Aviator Global Configuration .. 74

Enable/Disable Aviator Global Config ... 74

Check if list folders/documents are aviator enabled .. 74

Filter Configuration .. 74

Get My Filter Configs .. 74

Filter config support in object facets API .. 74

Fetching Facet data with Filter config ... 75

Sorting enhancement in object facets API .. 75

Filter config support in collection items API ... 75

File Count .. 75

Retirement of RADL ... 76

D2 Objects Locations API .. 76

API Changes in D2 Locations: .. 76

Audit Trails .. 77

API Changes in Audit Trails ... 77

Lifecycle (LC) development ... 78

LC API to fetch Lifecycle Config for the given transition ... 78

LC API to initialize Lifecycle on a document (legacy flow) .. 78

LC API to evaluate Entry conditions and transition conditions 78

OTDS Support for Life Cycle Change State E-Signoff .. 79

API Changes in D2 Lifecycle Config Fetch ... 79

API Changes in LifeCycle Init | LifeCycle Apply API ... 79

D2 REST - As a user I should be able to send email to the list of users in the email-list
when lifecycle succeeds. .. 79

D2-Config: As D2 PMs we want to provide an OOTB default email template that can be
used for LC state changes send mail mailing list. ... 80

LC API to apply LC state transition in homogenous flow with EC & TC 80

LC API to honor mass update properties bag during LC state transition 80

LC state transition homogeneous flow asynchronously to send email 80

Lifecycle API to evaluate homogeneous flow .. 81

Menu action label is required as part of config data for LC .. 81

10

D2-REST: As D2 Admin I expect user to see a single e-sig dialog & IDP login during multi-
file LC state change actions if user is using external IDP when LC state change requires
e-signature. ... 81

API For D2 Lifecycle Config Fetch .. 81

API Details For LifeCycle Init | LifeCycle Apply API ... 82

Installation Guide .. 82

WebLogic 12.1.3 .. 82

WebSphere Installation instructions... 82

About OpenText .. 83

What’s changed in 24.2?
Please refer to the below sections and their content for what’s changed in 24.2.

1. Added a section “Business Administration”.
2. Added a sub-section “All Workflows” under section “Workflows”.
3. Added a sub-section “All Workflow Status Summary” under section “Workflows”.
4. Added a section “Aviator”.
5. Added a section “Filter Configuration”.
6. Added a section “File Count”.
7. Added a section "Object specific permissions API”.
8. Updated a section “Collections”.
9. Added a section “Share Collections”.
10. Added a section “D2 Objects Locations API”.
11. Added a section “Audit Trails”.
12. Added a section “Retirement of RADL”.

What’s changed in 23.4?
Please refer to the below sections and their content for what’s changed in 23.4.

1. Added a section “Workflow”.
2. Added a section “JDK-17 Spring 6 Migration”.
3. Added a section “Security Changes”.
4. Added a section “Login Logout Audits”.
5. Added a section “Encrypted DM Ticket”.
6. Added a section “D2 Column Preferences”.
7. Added a section “Relations”.
8. Added a section “D2 Options API.”
9. Added a section “D2 preferences.”
10. Added a section “Collections”.

11

What’s changed in 23.2?

Please refer to the below sections and their content for what’s changed in 23.2.

1. Added new section: “View Permission”.
2. Updated the section “Common Definition – Query Parameters”.
3. Updated the subsection “Request Body” under section “Object Creation”.
4. Updated subsection 5 “Creating Digital Signature Request” under section “Digital Signature”.
5. Updated subsection 3. “Validation API” under section “Digital Signature”.

Overview

This document is a guide to using OpenText D2FS REST services.

Documentum D2 provides two clients: D2 Client and D2-Config. D2 Client is a web-based
application that gives users the ability to interact with content in one or more repositories.
D2-Config is the administration client of Documentum D2.

D2FS REST services allows a REST client to utilize configurations that are defined in D2-
Config. This document is intended for developers and architects who are building clients for
D2FS REST Services.

What are D2FS REST Services?

OpenText D2FS REST Services are a set of RESTful web service interfaces that interact with
D2 Configurations and honor them as required. Being developed in 99999 purely RESTful
style, D2FS REST Services provides high efficiency and simplicity when programming and
makes all services easy to consume. These advantages make D2FS REST Services the best
choice for next generation applications and mobile applications to interact with the D2
Configurations.

D2FS REST Services are written as part of the extensibility feature of the OpenText
Documentum Platform REST services (also called Documentum REST services). Hence, the
REST services provided by Documentum REST services and D2FS co-exist in the D2 server
space. Currently, D2FS REST services, which have corresponding link relations and URLs in
Documentum REST, are identified by the suffix “-d2” in their link relations and URL over the
existing resources provided by Documentum REST services. For any new service which is
specific to D2FS, the link relation may not carry the suffix.

As with Documentum REST services, D2FS REST Services models objects in Documentum
repositories as resources and identifies resources by Uniform Resource Identifiers (URIs). It
defines specific media types to represent resources and drives application state transfers by
using link relations. It uses a limited number of HTTP standard methods (GET, PUT, POST,
and DELETE) to manipulate resources over the HTTP protocol. D2FS REST Services supports
the JSON and XML format for resource representation. D2FS REST Services does not

12

introduce any new media types and only uses the existing types that are available as part of
the Documentum REST services.

Consuming D2FS REST Services

D2 REST Services delivers a deployable Java web archive (WAR) that runs in a web container
of a Java EE application server (refer to release notes for system requirements). D2 REST
Services exposes the interface as network-accessible resources identified by URIs. D2 REST
Services is programming language independent, therefore, you can consume the services by
using any language that has a HTTP client library, such as Java, .NET, Python, or Ruby.
Because of these features, D2 REST Services doesn’t ship any kind of client or SDK (Software
Development Overview Kit) to the users. You can freely develop the REST client to consume
the REST service if you follow hypertext-driven principles.

13

Relationship with other Documentum Platform APIs

D2 REST Services rely on the D2FS library to perform operations based on the D2 Configurations
available in the Documentum Content Server. The D2FS library uses DFC and communication between
the REST server and Content Server is conducted over Netwise RPC. D2 REST Services is a lightweight
alternative to the existing D2FS SOAP Services. However, it is not intended to provide the equivalent
functionalities in the initial release. You can leverage the simplicity of RESTful services to achieve
highly productive programming.

General REST Definitions

Common Definition - HTTP Headers

D2 REST Services supports the following common HTTP headers.

Http Header
Name

Description In Request or
Response

Value Range

Authorization Authorization
header
for authentication

Request HTTP basic authentication header
with the credential part encoded,
for
example:
Authorization: Basic
QWxhZGRpbjpvcGVuIHNlc2FtZQ==
Or, Kerberos authentication header
with the credential part encoded,
for
example:
Authorization: Negotiate
YIIZG1hZG1pbjpwYXNzd29yZ...

Accept Acceptable media
type for the
response

Request See the topic, "Supported
MIME Types."

Content-Type MIME type of the
request body or
response body

Request
/Response

See Supported MIME Types.
The REST server ignores the charset
parameter in the Content-Type
header.

Location URI of the
newly-created
resource

Response URI

Content-Length Size of the entity-
body,
in decimal number

Request
/Response

Non-negative number

14

of
OCTETs, sent to the
recipient

Common Definition – Query Parameters

D2 supports the following common query parameter:

- Inline

The rest of the query params remain unsupported as the extensibility framework does not
have options to consume an existing collection.

D2-REST only supports date time input in ISO format (yyyy-MM-dd'T'HH:mm:ss.SSSZZ or
yyyy-MM-dd'T'HH:mm:ss.SSSXXX). For example: 2023-02-09T10:15:00.000+0530. Append
the time zone with date and time as shown in the example.

Please refer to the “Common Definition - Query Parameters” section of the Documentum
Platform REST services – Developer Guide for detailed information on query parameters.
Their purpose and meaning are described in the Developer Guide.

HTTP Status Codes

Please refer to the “HTTP Status Codes” section of the Documentum Platform REST services
– Developer Guide for detailed information on list of status codes that will be returned by
the services. Their purpose and meaning are described in the Developer Guide.

Supported MIME Types

A media type (also called a content type or MIME type) is a short string identifying the
format of a document. Once you know a document’s media type, you can parse it. As
described in the D2FS REST services section, the services do not introduce any new MIME
types--they use the ones that are already available with the Documentum Platform REST
services. Please refer to the “Supported MIME Types” section of the Documentum Platform
REST services – Developer Guide for detailed information on the list of supported MIME
types. Their purpose and meaning are described in the Developer Guide.

HTTP Methods

Documentum D2FS REST Services supports the following HTTP methods:

• GET

Use this method to retrieve a representation of a resource.

https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US

15

• POST

Use this method to create new resources or update existing resources.

• DELETE

Use this method to delete a resource.

Link Relations

The D2FS REST service is a hypermedia driven API. Link relation forms the basis of
hypermedia driven APIs. The key purpose of a link relation type is to identify the semantics
associated with the link. The client chooses one of the available link relations for a state
transition—either an application or a resource.

D2FS introduces new link relations to access the D2 specific resources and to consume the
existing D2 Configurations.

Clients are always required to use the link relations that are provided by the server for state
transition. The link relations are immutable and the links(“href”) are constructed at
runtime, depending on the client’s application state.

Link relations are not URIs. The URI that they refer to provide information on how to use
these link relations. Clients need to refer to the actual links “href” associated with the link
relations to achieve state transition of resources.

Public Link Relation Registry

The Internet Assigned Numbers Authority (IANA) maintains the public link relations registry
here: http://www.iana.org/assignments/link-relations. The following table describes the
link relations that are used within D2FS REST Services and includes links to the detailed
specifications.

Link Relation Description Specification

Edit Points to a resource
that can be used to
edit the link’s context.

http://tools.ietf.org/html/rfc5023

self Conveys an identifier
for the link’s context.

http://www.ietf.org/rfc/rfc4287

16

D2FS Link Relations

The following table includes link relations defined within OpenText for use by D2FS REST
Services.

Link Relation Description Application
State

http://identifiers.opentext.com/link
rel/ creation-profiles

Provides a href to the Creation Profiles
resource. This resource allows you
access the list of creation profiles
configured in D2-Config.

After the user logins
into a repository
space.

http://identifiers.opentext.com/link
rel/ creation-profile

Provides a href to the Creation Profile
resource. This resource allows you
access to a specific profile configured
in D2-Config.

After the user gets
into the list of
creation profiles.

http://identifiers.opentext.com/link
rel/ type-configurations

Provides a href to the list of types
defined within the selected creation
profile in D2 Config.

After the user gets
into a specific
creation profile.

http://identifiers.opentext.com/link
rel/ type-configuration

Provides a href to a specific type
within the selected creation profile in
D2 Config.

After the user gets
into the list of types
for a specific profile
configuration.

http://identifiers.opentext.com/link
rel/ object-creation

Provides a href to create an object
honoring the D2 Configuration
provided.

After the user logins
into a repository
space.

http://identifiers.opentext.com/link
rel/ document-templates

Provides a href to the Templates
resource. This resource allows you
access the list of template documents
configured in D2-Config.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/link
rel/ document-template

Provides a href to the Template
resource. This resource allows you
access the specific template
configured in D2-Config.

After the user gets
into a list of template
documents.

17

http://identifiers.opentext.com/link
rel/comments

Provides a href to the Comments
resource. This resource allows you
access the list of comments on the
document.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/link
rel/comment

Provides a href to the Comment
resource. This resource allows you to
access a specific comment.

After the user gets
into a list of
comments.

The link relations appear in the relevant application state within the context of the client.

The below link relations will exist until the Core REST extensibility is in place. Once,
extensibility is used in D2FS REST services, then the below link relations will cease to exist.

Link Relation Description Application
State

http://identifiers.opentext.com/linkr
el/ object-creation

Provides a href to create an object
honoring the D2 Configuration
provided.
This will be overriding core REST link
relations in Document Resource,
Folder Child Object Resource where
creation of object is applicable. Refer
below for more details.

After the user logins
into a repository
space.

http://identifiers.opentext.com/linkr
el/checkout/

Provides a href to checkout/lock this
object. This will be overriding core
REST link relation which is applicable
for checkout/lock.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/linkr
el/cancel-checkout

Provides a href to cancel
checkout/unlock this object. This will
be overriding core REST link relation
which is applicable for cancel
checkout/unlock.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/linkr
el/checkin-next-major

Provides a href to check-in next major
version of this object. This will be
overriding core REST link relation
which is applicable for check-in next

After the user gets
into a specific
document/object.

18

major version.

http://identifiers.opentext.com/linkr
el/checkin-next-minor

Provides a href to checkin next minor
version of this object. This will be
overriding core REST link relation
which is applicable for check-in next
minor version.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/linkr
el/checkin-branch

Provides a href to checkin branch
version of this object. This will be
overriding core REST link relation
which is applicable for check-in
branch version.

After the user gets
into a specific
document/object.

http://identifiers.opentext.com/linkr
el/checkin-same

Provides a href to checkin same
version of this object. This will be
overriding core REST link relation
which is applicable for check-in same
version.

After the user gets
into a specific
document/object.

http://identifiers.com/com/linkrel/pr
eview-urls

Provides a href to the preview urls
resource. This resource allows you
access the list of preview urls on the
document. This will be overriding
core REST link relation which is
applicable for Content/Contents
Resource.

After the user gets
into a specific
document/object.

The link relation (http://identifiers.opentext.com/linkrel/object-creation) which is used for object creation
will override link relations such as: http://identifiers.opentext.com/linkrel/objects,
http://identifiers.opentext.com/linkrel/documents, and other relations where object creation is applicable.

19

Explore the D2FS REST services

This section provides a sample which guides you through how to use the D2FS REST
services.

This sample uses JSON representation and collection pattern to represent feeds. This
assumes that the D2FS REST service is deployed in localhost:8080 and the client is a web-
browser capable of rendering JSON results.

Common Tasks

The common tasks that are currently available in the D2FS REST services is to:

A) Understand the list of creation profiles that are available for a user.

B) Understand the list of types that are available within a specific profile.

C) Understand the configurations present on a specific type.

D) Create an object of a specific type that honors the D2-Configurations.

E) Understand the list of templates available for an object.

E) View/add new/delete existing comments to an existing object in the repository.

Resources

Organization of Resource Reference Documentation

These guidelines apply to each resource reference documentation entry:

• All method parameters are optional unless otherwise noted.

• DELETE and GET methods do not have a request body.

Profiles

The profiles resource represents a collection of all the profiles that are available in the
context of the user.

URI Template

/repositories/ {repositoryName}/ profile-configuration

repositoryName Name of the repository

20

Feed

Feed Id Feed Title Updated Entry Supports
POST or not

URI of the
Creation
Profiles
resource
without the
file extension

List of D2 Creation
Profiles

Server’s current time Profile NO

Entry Id Entry Title

URI of the Creation Profile Profile Name

Link Relation

Link Relation Description

self URI of the Creation Profile collection feed.

Operations

Method Description

GET Lists all the creation profiles in the repository for
the current user’s context.

Get Profiles-D2
Lists all the creation profiles in the repository for the current user’s context.

HTTP Method
GET

21

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None

Response Headers
• Content-Length
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/atom+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
403 - Permission denied
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the D2 Creation Profiles collection.
• The body contains a list of D2 Creation Profiles.
• Each object may contain all properties of the creation profile, depending on the setting of the query

parameter (inline = true).
• The returned child objects collection only contains those that the user has access to.
• Each profile entry must contain link that point to a specific profile.

22

Profile

The profile resource represents a creation profile in the repository.

URI Template

/repositories/ { repositoryName }/ profile-configuration /{profileId}

repositoryName Name of the repository

profileId Object ID of the Creation Profile

Link Relation

Link Relation Description

self Link to this creation profile

type-configuration [1] Collection of types that are defined as part of this
profile

[1] This link relation is defined by Documentum. The fully qualified Documentum link relation
path is prefixed with the following string: http://identifiers.opentext.com/linkrel/

Operations

Method Description

GET Retrieves properties, and other information of the
Creation profile resource.

Get a Profile
Gets properties and other information of this Creation Profile. Properties are returned as embedded
elements in the response message body. Other information, such as types, is referenced from the link
relations of the response message body.

HTTP Method
GET

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

23

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
404 – D2 Creation Profile not found.
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the D2 Creation Profile.

Search Configurations

The search configurations resource represents a collection of all the search configurations
that are available in the context of the user.

URI Template

/repositories/ {repositoryName}/ search-configuration

24

repositoryName Name of the repository

Feed

Feed Id Feed Title Updated Entry Supports
POST or
not

URI of the
Search
Configurations
resource

List of D2 Search
Configurations

Server’s current time Search
Configuration

NO

Entry Id Entry Title

URI of the Search Configuration Search Configuration name

Link Relation

Link Relation Description

self URI of the Search Configuration collection feed

Operations

Method Description

GET Lists all the search configurations in the repository
for the current user’s context.

Get Search Configurations
Lists all the search configurations in the repository for the current user’s context.

HTTP Method
GET

25

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Length
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/atom+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
403 - Permission denied
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the D2 Search Configurations collection.
• The body contains a list of D2 Search Configurations.
• Each object may contain all properties of the search configuration, depending on the setting of the

query parameter (inline = true).
• The returned child objects collection only contains those that the user has access to.
• Each search configuration entry must contain link that point to a specific configuration.

26

Search Configuration

The search configuration resource represents a search configuration in the repository.

URI Template

/repositories/ { repositoryName }/ search-configuration /{configId}

repositoryName Name of the repository

configId Object ID of the Search Configuration

Link Relation

Link Relation Description

self Link to this search configuration

Operations

Method Description

GET Retrieves the types names, attribute names, facets
and other data associated with a D2 Search
Configuration.

Get a Search Config
Gets types, attributes, and other information of the Search Configuration. The data is returned as

embedded elements in the response message body.

HTTP Method
GET

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

27

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
404 – D2 Creation Profile not found.
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the D2 Creation Profile.

Types

The types resource represents a collection of all the types that are defined in a specific D2
Creation profile.

URI Template

/repositories/ {repositoryName}/ type-configuration?profile={profileId}

repositoryName Name of the repository

profileId Object ID of the Creation Profile (mandatory)

28

Feed

Feed Id Feed Title Updated Entry Supports
POST or not

URI of the
types
resource
without the
file extension

List of types Server’s current time Type NO

Entry Id Entry Title

URI of the type Type Name

Link Relation

Link Relation Description

self URI of the D2 Types collection feed for this profile.

Operations

Method Description

GET Lists all the D2 Types in the repository for this
creation profile.

Get Types-D2
Lists all the types configured for the specific creation profile.

HTTP Method
GET

Server Accepted Request Media Types
None

29

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Length
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/atom+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
403 - Permission denied
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the D2 Types collection.
• The body contains a list of types configured for this creation profile.
• Each object may contain all configured properties of this type, depending on the setting of the query

parameter (inline = true).
• The returned child objects collection only contains those that the user has access to.
• Each type entry must contain link that point to a specific type.

30

Type

The type resource represents the configuration of a type in a specific creation profile.

URI Template

/repositories/{repositoryName }/type-configuration/{typeId}?profile={profileId}

repositoryName Name of the repository

profileId Object ID of the Creation Profile to which this type
belongs (mandatory)

typeId Object ID of the type

Link Relation

Link Relation Description

self Link to this type

type-configuration Collection of types that are defined as part of this
specific profile

Operations

Method Description

GET Retrieves properties, and other information of the
type resource.

Get a Type
Gets properties and other information of this Type. Properties are returned as embedded

elements in the response message body.

HTTP Method
GET

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

31

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the type configured in a specific D2 Creation Profile.

Templates

The templates resource represents the list of available templates for this object.

URI Template

/repositories/{ repositoryName }/objects/{objectId}/ document-templates

repositoryName Name of the repository

objectId Object ID

32

Link Relation

Link Relation Description

self Link to the templates for this object.

Operations

Method Description

GET Retrieves the list of content templates applicable
for this object.

Get Templates
Gets the list of available templates for this object. The template properties are returned as

embedded elements in the response message body. Other information, such as the link to the actual
template, is referenced from the link relations of the response message body.

HTTP Method
GET

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

33

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
500 - Other unexpected server error

Response Body
This is a XML or JSON representation of the list of templates available for this object.

Create Object Content using Templates
Creates an object’s content based on an existing template. This operation is performed on an

already created object. When the object has no content attached to it, the template is bound to the
object. When the object already has content and is of a compatible format to the template, then the
template is attached. If the format is incompatible, an appropriate error message is provided.

URI Template

/repositories/{ repositoryName }/objects-d2/{objectId}

repositoryName Name of the repository

objectId Object ID

 This URI template will be replaced with /repositories/{repositoryName}/objects/{objectId}.
 This will be done when the URIs from Core REST can be overridden.

Operations

Method Description

POST Specify the template name to be attached to the
object.

HTTP Method
POST

34

Server Accepted Request Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json

Query Parameters
None

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
XML or JSON representation of the properties of template to be set on the object.

Example:
{ “properties”: {“template_name”: “AOP Document”, “folder_id”:” 0c01e2408004ee4e”}}

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
500 - Other unexpected server error

Response Body
This is an XML or JSON representation of the object to which template was bound.

35

Preview URLS

The templates resource represents the list of available preview URLs for this object.
BOCS/ACS and O2/C2 plugins are supported.

URI Template

/repositories/{repositoryName}/objects/{objectId}/preview-urls-d2

repositoryName Name of the repository

objectId Object ID

Link Relation

Link Relation Description

self Link to the parent object.

parent Link to the parent object

Operations

Method Description

GET Retrieves the list of preview URLs applicable for
this object.

Get Preview Urls
Gets the list of available preview URLs for this object. URLs are returned as embedded elements

in the response message body.

HTTP Method
GET

Server Accepted Request Media Types
None

Query Parameters
Inline – Refer to Common Definition – Query Parameters for more info.

Request Headers
• Accept

36

• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
None.

Response Headers
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Supported Response Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json
• application/xml (For compatible viewing)
• application/json (For compatible viewing)

Response Status
200 - Information retrieved successfully
400 - Bad request; invalid property name or value
401 - Authentication failed
500 - Other unexpected server error

Response Body
This is an XML or JSON representation of the list of URLs available for this object.

Configuration

Edit “settings.properties” file in “dctm-rest/WEB-INF/classes” path.
Define the D2FS server url.

connection.remote.url=http[s]://[proxy|server][:[port]]/[D2_Ctx]

37

C2 and O2 plugins installation

O2/C2 plugins are supported. They need to be manually installed.

C2 : Copy “C2-API.jar” and “C2-Plugin.jar” files in “dctm-rest/WEB-INF/lib” path.

O2 : Copy “O2-API.jar” and “O2-Plugin.jar” files in “dctm-rest/WEB-INF/lib” path.

Examples

Follow these steps after deploying Documentum D2FS REST Services:

1. Type the following URL in your web browser to navigate to the service.
Define <docbase> and <id> by a valid value.

http://localhost:8080/dctm-rest/repositories/<docbase>/objects/<id>/preview-urls

JSON result :

{

 "entries": [

 {

 "content": {

 "links": [

 {

 "href": "http://<server>/d2fs-

rest/repositories/<docbase>/objects/<id>/preview-urls-d2/",

 "rel": "self"

 },

 {

 "href": "http://<server>/d2fs-rest/repositories/<docbase>/objects/",

 "rel": "parent"

 }

],

 "url":

"http://<server>/D2/servlet/Download?uid=context_rest_XXXXXXXX&_docbase=<docbase>&_userna

me=XXXX&_password=XXXXXX&_locale=en&id=<id>&format=pdf&event_name=d2_view_inline&c2_confi

g_name=C2+QA+View"

 },

 "id": "http://<server>/d2fs-rest/repositories/<docbase>/objects/<id>/preview-urls-

d2/",

 "links": [

 {

 "href": "http://<server>/d2fs-

rest/repositories/<docbase>/objects/<id>/preview-urls-d2/",

 "rel": "self"

 }

],

 "title":

"http://<server>/D2/servlet/Download?uid=context_rest_XXXXXXXX&_docbase=<docbase>&_userna

http://localhost:8080/dctm-rest/repositories/%3cdocbase%3e/objects/%3cid%3e/preview-urls

38

me=XXXX&_password=XXXXXX&_locale=en&id=<id>&format=pdf&event_name=d2_view_inline&c2_confi

g_name=C2+QA+View",

 "updated": "2014-08-25T15:36:22.882+02:00"

 }

],

 "id": "http://<server>/d2fs-rest/repositories/<docbase>/objects/<id>/preview-urls-d2",

 "links": [

 {

 "href": "http://<server>/d2fs-rest/repositories/<docbase>/objects/<id>/preview-

urls-d2/",

 "rel": "self"

 }

],

 "title": "Preview urls on object: <id>",

 "updated": "2014-08-25T15:36:22.882+02:00"

}

 If C2 is installed, check if “c2_config_name” parameter is present in the URL.
 If O2 is installed, check if “o2_config_name” parameter is present in the URL.

Object Creation

Unlike Core REST APIs, where the creation of objects happens within a folder, in the D2
REST Server Space, the object creation can happen at the “repository” level. Created objects
are automatically placed into the user’s home directory or auto-linked to a specific folder,
depending on the D2 configuration. Hence, the object creation URI template resides at the
repository level.

As in Core REST, objects can be created in one or two steps. In a single-step creation
process, the objects are created by passing both content and properties together. In a two-
step creation, an object without content is created and then content is attached to the
created object.

While attaching content, templates can be bound as detailed in the Templates section. The
other way to attach content is by using the link relation “contents” on the object. For more
details on how to do this, see https://community.opentext.com/docs/DOC-33250 .

URI Template

/repositories/ { repositoryName }/object-creation

repositoryName Name of the repository

https://community.emc.com/docs/DOC-33250

39

Link Relation
 All the link relations that is applicable for a newly created object. See the “Link

Relation” section, in the SysObject resource of the Core REST Developer Guide, which provides
information on what kind of links are available for a certain type of object.

Operations

Method Description

POST Creates a new object

HTTP Method
POST

Server Accepted Request Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json

Query Parameters
None.

Request Headers
• Accept
• Authorization
• Content-Type
For more details about HTTP headers, see Common Definition - HTTP Headers.

Request Body
XML or JSON representation of the object to create.
• The object type is specified in the r_object_type property of the request body.
• Any other properties of the object can also be specified in the request body. The value of input date

attributes should be in ISO format with time zone suffixed. The format should be yyyy-MM-
dd'T'HH:mm:ss.SSSXXX (e.g.: 2023-02-09T10:15:00.000+0530). Other date time formats are not supported.

• The D2 Configurations that are applicable for this object creation is passed in the request body along
with other properties such as object_name.

• D2 Configuration takes precedence over supplied properties, such as object_name or folder_id, if
there are auto-naming rules and auto-linking rules specified.

https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US

40

• During creation, it is not possible to pass the template information. Template information can only
be set after the object is created because the lists of available templates that can be bound to the object
depend on the created object. So, the template is not a valid d2 configuration during creation.

• In case of mulitpart, it is necessary to set the Content-type to multipart/form-data;
boundary=boundary_string. The boundary string acts as a separation between the form-data and the
content. For more information, see the “Multi-part Request Representation” section of the Core REST
Developer Guide.

Examples
• Creation of object without content:
{"properties":{"r_object_type": "bookpreview", "d2_configuration": ["start_version=2.2",

"lifecycle=New lifecycle", "folder_id=0c01e24080000105"], "object_name":"test.txt"}}

• Creation of object with content:

--91FJE9lOv7JqplS6Y_AYIoCtY2ePfQxPaiK
Content-Disposition: form-data; name="object"
Content-Type: application/vnd.emc.documentum+json; charset=UTF-8

{"properties":{"r_object_type": "dm_document", "d2_configuration": {"inheritance_config ":"New

inheritance", "inherited_id":"0900304280007df9","inherit_properties":"true", "lifecycle": "Document Life
Cycle"}, "object_name":"test33.txt"}}

--91FJE9lOv7JqplS6Y_AYIoCtY2ePfQxPaiK
Content-Disposition: form-data; name="content"; filename="plain.txt"
Content-Type: plain/text; charset=UTF-8

This is a primary content sample with plain text!
--91FJE9lOv7JqplS6Y_AYIoCtY2ePfQxPaiK

Object Versioning

Objects can be versioned by the user who has sufficient permissions on the object. In
addition to the permissions, the D2-Configuration offers configuration to place additional
options and restrictions when checking in and checking out the object.

As in Core REST, objects can be versioned by doing a checkout followed by a check-in. The
check-in can be a minor/major/branch/same version. The checkout places a lock on the
object which can be removed by doing a cancel-checkout. The check-in request can be a
POST request which posts:

a) text/plain: for content only.

b) multi-part: for content and properties.

https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US

41

c) JSON/XML: for properties only.

While doing a checkout/check-in the corresponding D2 configurations, check-in and
checkout config objects are read. The configurations are honored by the D2REST services.

URI Template

/repositories/ { repositoryName }/ objects/{chronicleId}/versions?object-
id={objectId}&version-policy=next-major

/repositories/ { repositoryName }/ objects/{chronicleId}/versions?object-
id={objectId}&version-policy=next-minor

/repositories/ { repositoryName }/ objects/{chronicleId}/versions?object-
id={objectId}&version-policy=branch-version

/repositories/ { repositoryName }/ objects/{chronicleId}/versions?object-
id={objectId}&version-policy=same-version

repositoryName Name of the repository

chronicleId Chronicle ID of the object.

objectId Object ID

Link Relation
All the link relations that is applicable for a newly created object. See “Link Relation”, section

in SysObject resource of the Core REST Developer Guide, which provides information on what kind of
links are available for a certain type of object.

Other Details
Please refer to the Core REST Developer Guide for more info since these link relations are

extensions from Core REST and they honor D2-Config. Sample steps of how object can be locked and
versioned are also present in the Guide.

Sample Steps

 These steps describe how to perform common tasks in D2.

Viewing profiles, types

Follow these steps after deploying Documentum D2FS REST Services:

https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US
https://support.emc.com/docu51005_Documentum_Platform_REST_Services_7.1_Development_Guide.pdf?language=en_US

42

1. Type the following URL in your web browser to navigate to the service node (Home
Document).

http://localhost:8080/dctm-rest/services.json

The service node contains a list of the available services.

In the link relation http://identifiers.opentext.com/linkrel/repositories, note the URI to the
repositories resource.

2. Click the repositories link you got from step 1 to navigate to the list of all available
repositories. Explore the output and note the information in the entries element.

3. Click the href link of the edit link relation of a repository in the entries element to retrieve
the details of the repository. Enter your credentials if you are prompted for authentication.

By accessing the “href” values for the various link relations in the links element, you can drill
down various resources in the repository.

4. By clicking the “href” for link relation (http://identifiers.opentext.com/linkrel/profiles-
d2) in the links section, you can navigate to the list of available D2 Creation Profiles. This list
is based on the user’s context which is configured in D2.

http://localhost:8080/dctm-rest/services.json

43

Optionally, “inline=true” query param can be used for the complete entry to be visible.

44

5. Alternatively, to only view a specific profile, navigate on the link rel: “self” of an entry.

45

This response has link relations to point to the:

a) types present in this profile.

b) a self-link pointing to itself (this profile).

6. To know the list of types configured in a profile, navigate to the “href” of the link relation
identified by: http://identifiers.opentext.com/linkrel/types-d2. Use inline=true to get the
type configuration along with the types. Otherwise, navigate on the “self” link relation of
each type entry.

http://identifiers.emc.com/linkrel/types-d2

46

As seen earlier for profile, each type has similar link relations to navigate to:

a) the types which are present in this profile (types-d2).

b) self link (which is this type).

Content creation

There are 2 ways to create content:

A) Create Object without Content; attach content to the object (two steps).

B) Create object with content (single step).

Create Object without content

A) To create Object without content, navigate to the href pointed by linkrelation:
http://identifiers.opentext.com/linkrel/objects -d2.

http://identifiers.emc.com/linkrel/objects%20-d2

47

Now, POST data such as below to create an object without content:

The "d2_configuration" section provides the list of configurations that are to be applied to
the created object. Note that these configurations need to exist in the Docbase. Here is a
sample response for the above request:

Now, to set the content, follow the Core REST link relations or use templates from D2.

48

To get the list of available templates for this object, follow the href for the link relation:
“http://identifiers.opentext.com/linkrel/document-templates”
The response contains information about the template and the URL to the actual template document
object.

To set content to the object without using templates, use the other link relations “content”.

49

Create Object with content

To create Object with content, navigate to the href pointed by linkrelation:
http://identifiers.opentext.com/linkrel/object-creation.

Now, POST data such as below to create an object with content.

This content can be stored as a file in the local machine and the content-type needs to be
set as: multipart/form-data; boundary=boundary_string.

This is like the earlier request; however, the “d2_configuration” is passed along with the
content.

The response obtained is like the earlier response.

C2-View & C2-Print

To support C2-View and C2-Print, install the C2-plugin to the D2 REST Web application.
Manually copy C2-API.jar and C2-plugin.jar into the D2 Rest Web War file.

URI Templates:

1) X_C2_VIEW_D2_URI_TEMPLATE : {repositoryUri}/objects/{objectId}/views/c2-view

2) X_C2_PRINT_D2_URI_TEMPLATE: '{repositoryUri}/objects/{objectId}/views/c2-print'

C2-View :

C2-View lists all the download URLs for the given object only if the object has at least one
PDF rendition. It gets download urls for all the C2_View_configs applicable for the given
document.

Link Relation:

50

This new http://identifiers.opentext.com/linkrel/views/c2-view link relation is
available to the object if the object’s content itself is PDF or it has at least one PDF rendition
available.

Eg :

<link rel="http://identifiers.opentext.com/linkrel/views/c2-view"

href="http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/0900303

98005c5b2/views/c2-view"/>

HTTP Method
GET

Server Accepted Request Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json

Query Parameters
None.

HTTP Sample Request:

http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/090030398005c5b2

/views/c2-view

Sample Response for the above request is shown below:

http://identifiers.emc.com/linkrel/views/c2-view
http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/090030398005c5b2

51

<dm:url>: The download URL also lists BOCS/ACS URL based on the following properties
configured in d2fs.properties.

D2-BOCS=true

includeAcsServer=true

Note: OpenText does not support Linked objects and Multi repository solutions as it’s a
limitation in CORE REST.

C2-Print :

C2-Print lists all the print URLS for the given object only if the object has at least one PDF
rendition. It gets print-urls for all the c2_print_configs applicable for the given document.

Link Relation:

This new http://identifiers.opentext.com/linkrel/views/c2-print link relation is
available to the object if the object’s content itself is PDF or it has at least one PDF rendition
available.

Eg :

<link rel="http://identifiers.opentext.com/linkrel/views/c2-print"

href="http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/0900303

98005c5b2/views/c2-print"/>

HTTP Method
GET

http://identifiers.emc.com/linkrel/views/c2-print

52

Server Accepted Request Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json

Query Parameters
controlled_field_1
controlled_field_2
controlled_field_3.

HTTP Sample Request:

http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/090030398005c5b2

/views/c2-print

Sample Response for the above request is shown below:

Workflow and Task related REST Services

List of REST End points related to workflow

Task List End Point:

 http://{host}:{port}/d2fs-rest/repositories/{repositoryName}/tasklist?inline=true

Http Method: GET

Description: Task List End point lists all the tasks of a logged in user, if inline=true, the task
response will include elaborated task description.

Note : Task response is not capturing Workflow participants information or Workflow
Delegation user list.

http://10.31.168.68:8090/d2_rest/repositories/CSAUTO/objects/090030398005c5b2

53

Task Status End Point:

 http://{host}:{port}/d2fs-rest/repositories/{repositoryName}/
/processes/{processName}/{processId}/{taskName}/{taskId}/status

Http Method: GET

Parameters:
processName: Name of the dm_workflow process
processId: r_object_id of the dm_workflow process
taskName: Name of the workflow activity
taskId: r_object_id of the dmi_queue_item

Description: Task Status End point provides the state of the workflow task.

Http Method: Post

Parameters:
processName: Name of the dm_workflow process
processId: r_object_id of the dm_workflow process
taskName: Name of the workflow activity
taskId: r_object_id of the dmi_queue_item

Description: Post method of Task Status End point allows us to perform various operations
on Task.

1) JSON request body for Accepting a task

 {
 "properties": {
 "action" : "acquire"
 }

 }

2) JSON request body for rejecting a task

{
"properties": {
"action" : "reject",
"comment": "test comment",
"next_task_id": "task id"

 }
 }

54

3) JSON request body for forwarding a task with sign-off intentions

 {
 "properties": {
 “action" : "forward",
 "comment": "test comment",
 "next_task_id": "task id"
 "signoff_login": "user name",
 "signoff_password": "user password"
 }
 }

4) JSON request body for delegating a task
 {

 "properties": {
 "action" : "delegate",
 "user":"user name"
 }

TaskNotes EndPoint
http://{host}:{port}/d2fs-
rest/repositories/{repositoryName}/processes/{processName}/{processId}/{taskName}/{taskId}/notes

HTTP Method
PUT

Server Accepted Request Media Types
• application/vnd.emc.documentum+xml
• application/vnd.emc.documentum+json

Sample request
{
 "properties" : {"task_note" :"POST NOTE THROUGH REST SERVICE"}
}

Digital Signature

55

D2 SmartView provides the capability to send a document to digital signature providers for digital signatures.
Digital signature solutions allow D2 to integrate with enterprise-grade signature applications that allow
employees and third parties to sign quotes, contracts, and other documents in a fast, compliant and hassle-
free way. This feature is achieved via D2 Smart View Workflows.

D2 Smart View supports OpenText Core Signature as a digital signature provider. OpenText™ Core Signature
is a professional and enterprise-grade electronic signature application.

Refer to the D2 Administration Guide and the D2 Installation Guide for details on the different configurations
required for this.

There are multiple Rest APIs to support this feature as listed below. For detailed information on Rest API
spec, RADL needs to be referred.

56

The following diagram illustrates different entities involved and flow of Rest APIs calls.

57

1. Digital Signature Configuration: The rest end-point ‘d2-task-digital-signature-config’ returns the
Digital Signature configurations of a D2 workflow task in D2-Config.
The link rel (http://identifiers.emc.com/linkrel/d2-task-digital-signature-config) for this API can be
accessed in the response of task details rest end-point when the task has been configured to use
‘Digital Signature’. The configuration contains information such as Digital Signature provider name,
whether signer grouping is allowed, whether external signer is allowed, and other configuration
details.

2. Authentication with Core Signature: In order to access Core Signature APIs, one needs a valid OTDS
token. D2 Rest uses authorization code flow to get valid access token.

‘d2-digital-signature-auth-checker‘ REST end-point has been provided to check if the user is
authenticated with Core Signature. The link rel (http://identifiers.emc.com/linkrel/d2-digital-
signature-auth-checker) to access this is provided in the response of ‘d2-task-digital-signature-config’
REST end-point.

If the user is already authenticated with Core Signature, then HTTP status 200 would be returned.
Otherwise, HTTP status 403 would be returned with the Location header with Core Signature
authorization code URL. The Location header would also contain redirect URI.

Once the user provides OTDS credentials then the authorization code would be sent to D2 Rest using
the redirect_uri specified in the Location header URL. D2 Rest server exchanges the authorization
code for an access token.
This access token is stored in the D2CORESIGN-TOKEN cookie for future access to Core Signature APIs
using D2 Rest.

Clients need to specify a call back handler in rest-api-runtime.properties using configuration
“rest.d2.digital.sign.callback.uri”. Once the access token is received by Rest API, the client would be
navigated to this call back handler.

3. Validation API: If a document is sent for signature, then the user shouldn’t be allowed to send it again
until the signature is complete/cancelled. Clients can call the ‘d2-digital-signature-documents-
validator’ rest end point to check this. The link rel http://identifiers.emc.com/linkrel/ d2-digital-
signature-documents-validator for this API is returned in the ‘d2-task-digital-signature-config’ rest end
point. This also checks other validation conditions like if document is checked out, if the document
size is more than the allowed size, or if the document type is allowed.

4. Get signers list: The rest end point ‘d2-digital-signature-signees’ returns the list of signers as

configured in D2-Config. The link rel ‘http://identifiers.emc.com/linkrel/d2-digital-signature-signees’ is
returned in ‘ d2-task-digital-signature-config’ rest end point.

5. Creating Digital Signature Request: Create a Digital Signature Request by sending a POST request to

the ‘d2-digital-signatures’ end point. The link rel (http://identifiers.emc.com/linkrel/d2-digital-

http://identifiers.emc.com/linkrel/d2-digital-signature-auth-checker
http://identifiers.emc.com/linkrel/d2-digital-signature-auth-checker
http://identifiers.emc.com/linkrel/
http://identifiers.emc.com/linkrel/d2-preset-profile
http://localhost:8080/d2fs-rest-web-22.2.0/repositories/d2repo/d2-tasks/1b0015fa801c1cd1/d2-digital-signature-signees/?inline=true
http://identifiers.emc.com/linkrel/d2-digital-signatures

58

signatures) for this is returned in ‘d2-task-digital-signature-config’ REST end-point. This API would
acquire a lock on the document on behalf of the superuser.

This API takes signer details, working documents, and supporting documents (attachments) in the
request body. In response to this API, the signature provider prepare URL is returned.

6. Send Digital Signature Request: Clients need to open the prepare URL in another window to send the

document for digital signature. Once the document is sent from the signature provider UI, there are
two options to get call back. One is to append ‘redirect_url’ to the prepare URL and open it. The
signature provider will redirect the user to this URL. The other options is to capture the windows
message events from the opened window. Core signature notifies the caller with the message events
once the document is successfully sent for signature.

7. Updating Digital Signature Request: The client needs to call ‘d2-digital-signature’ REST end-point once
the signature request has been sent in the Signature provider UI in order to update the signature
status in D2 Digital Signature object. The link rel (http://identifiers.emc.com/linkrel/d2-digital-
signature) is returned from the task details end point. This API doesn’t take any request body. Instead,
it gets the latest status and signers’ details from the provider and updates D2 Digital Signature object.

8. Get Digital Signature Request: Clients can call ‘d2-digital-signature’ end-point to know the latest

status of a digital signature tied to a given task. The link rel (http://identifiers.emc.com/linkrel/d2-
digital-signature) is returned from task details end point. This API is useful in scenarios when a
signature request is sent but a task couldn’t be marked as completed because of some network issue.
So, when a user revisits the incomplete task, clients can check if the signature is already created and
sent by calling this API. If the signature is sent, then the user might be allowed to complete the task. If
the signature is created but not sent, then the client needs to send a new digital signature request to
D2 Rest. An old signature request related to the task would be deleted from D2 as well as from the
signature provider.

9. Background D2 job: As described in the D2 Administration Guide, for each signature provider, there is a
job running on Documentum server. D2 method linked to the job polls the signature provider to get
the latest status on signature request. Every time there is a change in signer status or overall status,
there would be entry in the audit table depending on D2 audit config.
D2 installer deploys D2JobCoreSignStatusUpdate and D2CoreSignStatusUpdateMethod for Core
Signature Provider. Once a signature has been completed, D2 method would do the following:

a) It would get the signed document from signature provider and check-in the document to the
DCTM repository. It would honor any check-in config specified in D2 Config under Digital Signature
config. Once the document is checked in, the lock on the document is released.

b) It would get the signing log from the provider. The log file is added as relation
‘D2_DIGITAL_SIGNATURE_LOG’ to each of the signed documents. One needs to specify location
and ACL for the signing log in Digital Signature config.

http://identifiers.emc.com/linkrel/d2-digital-signatures
http://identifiers.emc.com/linkrel/d2-digital-signature
http://identifiers.emc.com/linkrel/d2-digital-signature
http://identifiers.emc.com/linkrel/d2-digital-signature
http://identifiers.emc.com/linkrel/d2-digital-signature

59

c) The workflow “Digital Signature Tracker Task” would be marked as completed, and the workflow
would move forward.

d) If ‘Digital Signature Tracker Task’ has been designed with a ‘Reject’ flow and the signature request
is ‘declined/cancelled’, then the task would be completed with a Reject path.

10. Workflow reporting:

a) ‘d2-workflow-tasks’ REST end-point returns information on ‘Digital Signature Tracker Task’. The task
would have configuration ‘is_digital_signature_awaiting_task’ set to true.

b) ‘d2-workflow-tasks-audits’ REST end-point returns information on all the digital signature events

auch as document sent for signing or signer signed/declined. This end-point takes a request param

‘is_digital_signature_awaiting_task’.

Zip and Download
Using D2-rest end-points user can create a compressed (zip) file from a set of files and folders. To do this
following rest end-points required to be called in the given order

1. Validate

2. Initialize zip and download

3. Status check

4. Download content

5. Cancel. This API can be called after the Initialize zip and download or before the
Download content API to have its meaningful impact.

Addition to the above APIs there is a job which runs on method sever to clean up the compressed files.
Details of the above rest end-points and job are documented in the following sections.

These rest end-points depend on ‘Smartview Content Import/Export’ configurations. So please refer admin
guide for more info on ‘Smartview Content Import/Export’ configurations.

Validate
The rest end-point ‘ d2-zip-and-download-validation‘ is used to validate the allowed file size, file type and
total count. link rel (http://identifiers.emc.com/linkrel/d2-zip-and-download-validation) for this rest end-point can

be accessed in the response of the repository rest end-point. This rest end-point needs a preconfigured zip and

download configuration to mention about the allowed total file size, file type, total files count etc. For more info on

this please refer “RADL” documentation.

../../../../Tomcat/apache-tomcat-9.0.46/webapps/d2sv/public/d2-rest/radl/index.html#resource-d2-workflow-tasks-audits
http://identifiers.emc.com/linkrel/d2-zip-and-download-validation

60

Initialize zip and download
The rest end-point ‘d2-zip-and-downloads’ returns a unique ID representing dm_sysobject which is used to track

the status of files archiving process(zip and download process status). The link rel
(http://identifiers.emc.com/linkrel/d2-zip-and-downloads) can be accessed in the response of the validation rest
end-point , ’d2-zip-and-download-validation’. This rest end-point creates a tracking dm_sysobject and starts
a separate background thread which gets files from Content Server, compresses and creates a downloadable
archieved file (zip file). This background thread also creates a manifest file which contains details about the
files included in the archieve and also the warning messages for the files which are not included as part of the
archieved file. For more info on this please refer “RADL” documentation.

Status Check
This rest end-point ‘d2-zip-and-download-status ‘returns current status of the files archiving process. Based on
the status user/client takes a call whether to call download content API or not. The link rel
(http://identifiers.emc.com/linkrel/d2-zip-and-download-status) can be accessed in the response of the ‘d2-zip-

and-downloads’ API. The possible status values are STARTED, INPROGRESS, COMPLETED, CANCELLED. For

more info on this please refer “RADL” documentation.

Download content
This rest end-point ‘d2-zip-and-download-content’ downloads the archived file to the clients machine by the

name download.zip. If the file-name is passed in the request then downloaded file will have the name passed. The

link rel (http://identifiers.emc.com/linkrel/d2-zip-and-download-content) can be accessed in the response of the

rest end-point ‘d2-zip-and-download-status ‘. This link rel will be available only after the status has the value
COMPLETED in the response of the rest end-point ‘d2-zip-and-download-status ‘. For more info on this please

refer “RADL” documentation.

Cancel Zip and download.
This rest end-point ‘d2-zip-and-download-cancel’ stops the file archive thread/process which is responsible for

downloading and creating a archived file. After this rest end-point is called user will not be allowed to download

half-baked archived file. The link rel (http://identifiers.emc.com/linkrel/d2-zip-and-download-cancel) can be

accessed in the response of the rest end-point d2-zip-and-download-status. For more info on this please refer

“RADL” documentation.

Zip and download clean up job
This job is used to clean up the archived files stored in the shared location. This job can be run periodically to
clean up. Following are the details of the job.
Job Name: D2JobZipAndDownloadCleanup
Method Name: D2ZipAndDownloadCleanupMethod
Method Command: com.emc.d2.api.methods.D2Method -class_name
com.emc.d2.api.methods.D2ZipAndDownloadCleanupMethod
Custom Argument: -age

http://identifiers.emc.com/linkrel/d2-preset-profile
http://identifiers.emc.com/linkrel/d2-zip-and-downloads
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/d2-zip-and-download-status
http://identifiers.emc.com/linkrel/d2-preset-profile
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://3po.opentext.com/D2-Smartview/static/d2-rest/radl/index.html#linkrel-http---identifiers.emc.com-linkrel-notes
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/
http://identifiers.emc.com/linkrel/d2-zip-and-downloads-status/

61

Description: Zip and Download init process will save the base directory location in the tracker object in
field directory_location.
This job will collect the directories information based on the following conditions,
Default age is one day or 1440 minutes
If status is INPROGRESS or STARTED, then the method will check the DATEDIFF with zip_process_init_time
If status is COMPLETED, then the method will check the DATEDIFF with archive_end_date
If the status is CANCELLED, then method will always collect the rows from DB
Once the Object Ids and Directories are collected then Job will delete the all the corresponding rows from the
DB and delete the directories.
In this process this JOB will assume that all the DATEs are saved in the DB in UTC format a common format for
APP server and Method Server, so that the date comparison can be uniform.

Advanced Search

Overview:
The advanced search feature from D2-REST provides search related capabilities to the REST clients such as
creating and saving search criteria, fetching objects based on search criteria, fetching saved search objects,
creating folders to save search criteria. Using advanced search, a user can search for documents based on a
lot of different criteria such as the content of the document, the document properties or the type of
document. The column and facet configuration defined by the user in advanced search displays the search
result as per the user requirement. It is also possible to limit the search to user defined folders through this
advanced search APIs.
 This feature has been broken down into several different APIs based on their usage and for ease of
access to this feature. Please refer to the glossary below to better understand the advanced search
terminology in REST APIs before proceeding further.

Search terminology:

Search group: A user may choose to create a saved search object, the folder where this object is stored is
referred to as a Search group. A search group is of 2 types: PRIVATE and PUBLIC. If a search object is meant to
be shared with others, it should be stored under a PUBLIC search group else store it in a PRIVATE search
group. Search group is also referred to as Search category.

Search sub-group: For better classification of search objects and for ease of management a user may choose
to create folders in Search group. The saved search objects can then directly be stored under these folders.
These folders are referred to as search sub-group or search sub-criteria.

62

Advanced search APIs:

Advanced search configuration:
The Advanced search config REST API (link-rel.: http://identifiers.emc.com/linkrel/search-configuration) is
used to fetch all the applicable advanced search configurations applicable to the current logged in user’s
context. These configurations include all the information a REST client might need to get started with
advanced search. Information like facet enabled flag, full-text search enabled, case sensitive option enabled
etc. are part of this API response. Refer RADL for a full sample response. This API also indicates whether the
logged in user is allowed to create public saved search objects.

Advanced search attribute value list API:
This REST API (link-rel.: http://identifiers.emc.com/linkrel/d2-search-attribute-value-list) is used to
fetch value of attributes that are configured with DQL/Dictionary. This REST API will return all the values
configured for an attribute for the list of types sent as request param. These types must be configured in D2-
Config search config.

Advanced search groups/sub-groups API:
This REST API (link-rel.: http://identifiers.emc.com/linkrel/d2-saved-search-groups) is used for 2 purposes:

1. To GET the list of all the search groups and sub-groups (PRIVATE or PUBLIC)
2. To create a new PRIVATE or PUBLIC search sub-group. When creating a new PUBLIC search group, the

end users can choose to define READER groups.
 If a PUBLIC search sub-group is created without READER groups, all users will have READ
access to saved search objects stored within this PUBLIC search sub-group.
 If a PUBLIC search sub-group is created with READER groups, only users belonging to the
READER group will have READ access to saved search objects stored within this PUBLIC search sub-
group. To get the possible list of users-groups that can be set as READER groups use the REST API (link-
rel.: http://identifiers.emc.com/linkrel/groups).

Advanced search group/sub-group API:
This REST API (link-rel.: http://identifiers.emc.com/linkrel/d2-saved-search-group) is used for 3 purposes:

1. To get the details of a particular search sub-group
2. To rename a search sub-group
3. To delete a search group

 When deleting a search sub-group, it is possible to delete the search sub-group and all the
saved search objects inside it by using the “force_delete” flag.

D2 Saved Searches API:
This REST API (link-rel.: http://identifiers.emc.com/linkrel/d2-saved-searches) is used for 2 purposes:

1. To get the list of all saved search objects and search sub-groups. This REST API can fetch all saved
search object (PRIVATE, PUBLIC OR PRIVATE+PUBLIC) and search sub-groups in a single go, however,
the request params exposed in this API help narrow down the response.

http://identifiers.emc.com/linkrel/search-configuration
http://identifiers.emc.com/linkrel/d2-search-attribute-value-list
http://identifiers.emc.com/linkrel/d2-saved-search-groups
http://localhost:63342/D2-M2/d2fs-rest-documentation/target/radl/d2fs-rest/index.html?_ijt=hn47omr9c1t1g0d11om6pj47ci#linkrel-http---identifiers.emc.com-linkrel-groups
http://identifiers.emc.com/linkrel/d2-saved-search-group
http://identifiers.emc.com/linkrel/d2-saved-searches

63

2. To create an advanced search object.

D2 Saved Search API:
This REST API (ink-rel.: http://identifiers.emc.com/linkrel/d2-saved-search) is used for 2 purposes:

1. To get detailed information on advanced search object.
2. To edit advanced search object.

*Refer RADL for more information on the above APIs.

View Permission

Permissions API
This CORE-REST API (link-rel.: http://identifiers.emc.com/linkrel/permissions) is used to get the basic and
extended permissions for a logged in user, any particular user or any group for the selected object

D2 Users Groups API
This D2-REST API (link-rel.: http://identifiers.emc.com/linkrel/d2-users-and-groups) is used for the following
purposes:

1. To get the list of users and groups in the system.
2. Use the filter request parameter, to get a list of only users, only groups, or to find a user or a

group by a property (such as name or email).

D2 Permissions set API
This D2-REST API (link-rel: http://identifiers.emc.com/linkrel/d2-permission-set) is used for getting the
permission set of the object (including restriction list, required groups, and required group sets if
MACL is enabled) with the following additional attributes and capabilities:

1. Gets an additional Boolean attribute r_is_group for each permission object.
2. Additional query parameter accessor-id (r_object_id of dm_user or dm_group) is

introduced in the request to filter permission of a user or a group. If the accessor-id is

passed, then all the ancestor groups which are part of the permission set are returned

in the result set.

Note: For 23.2 and newer, D2-REST (with the help of D2-Config) supports MACL (Mandatory Access

Con Control List). This means the security template in D2-Config now supports Permission,

Restriction, Required Group, and Required Group Set. Prior to 23.2, D2-Config only supported

Permissions. All the D2-REST endpoints honor the MACL, wherever applicable. Refer to D2-Config

guide for more details.

http://localhost:63342/D2-M2/d2fs-rest-documentation/target/radl/d2fs-rest/index.html?_ijt=o6n565hishhit4sgp4bjnq8j8n#linkrel-http---identifiers.emc.com-linkrel-search-configuration
http://identifiers.emc.com/linkrel/permissions
http://identifiers.emc.com/linkrel/permissions
http://identifiers.emc.com/linkrel/permissions

64

Workflow
From 23.4 onwards, the workflow task configuration ‘Display Task in Workflow Manager’ checkbox is
honored in d2-workflow-tasks D2-REST API (link-rel: http://identifiers.emc.com/linkrel/d2-workflow-tasks).
Up until D2-REST version 23.2, this config option was not honored for this API.

All Workflows

Any user who has access to the AdminWorkflowWidget Widget (introduced in 24.2) can call the D2-
Workflows REST endpoint (link rel.: http://identifiers.emc.com/linkrel/d2-workflows). This D2-REST endpoint
is used to get the list of all the Workflows in the system (it is limited by the template selection in the
AdminWorkflowWidget). More details on this API can be found in Swagger Documentation.

All Workflow Status Summary

The new D2-REST endpoint (link rel.: http://identifiers.emc.com/linkrel/all-workflows-status-summary) ,
introduced in 24.2 provides a workflow summary count using the AdminWorkflowWidget Widget name. The
count displayed is limited by the template selection in the AdminWorkflowWidget Widget. More details on
this API can be found in Swagger Documentation.

Relations
The D2-REST API for relations (link rel: http://identifiers.emc.com/linkrel/d2-relations) allows for fetching
relations. However, starting in 23.4, clients can now use this API to fetch custom attributes for custom
relations by using the newly introduced request param “object-type” (more information can be found in
Swagger documentation).

JDK-17 Spring 6 Migration
From 23.4 onwards, D2-REST is supported by Spring 6 and should be run on JDK version 17.0.8 or higher. Due
to Spring 6 changes, we have introduced a property "rest.requestmapping.trailing.slash.match" in the "rest-
api-runtime.properties" file, which allows one to control trailing slash matching in URLs. For example, an API
method mapped to "/repositories" will also match "/repositories/" with the default behavior enabled, as the
property is set to true by default. However, in the next release, D2-REST will no longer match trailing slashes
by default. Users will need to explicitly set the property to true to enable the trailing slash matching.
Eventually, trailing slash support will be removed in a future release.

65

Security Changes

By default, the Documentum REST authentication mechanisms will be available for D2-REST as well. For
detailed information about Documentum REST authentication, please refer to the Documentum REST
Administrator's Guide.

Currently, D2-REST supports the following authentication modes:

• basic
• basic-ct
• oauth2
• ct-oauth2
• otds_token
• ct-otds_token
• otds_ticket-otds_token
• ct-otds_ticket-otds_token
• otds_password
• ct-otds_password

Additionally, the D2-REST provides a fallback mechanism for the following authentication modes:

• ct-otds_token
• ct-otds_ticket-otds_token
• otds_ticket-otds_token

Starting from version 23.4 onwards, D2-REST will support only full authentication for the oauth2 and ct-
oauth2 authentication modes. D2-REST has also removed the source code of the deprecated authentication
mechanisms.

Login Logout Audits
D2-REST from 23.4 onwards provides the capability to audit user login and logout for front-end clients like
D2-SmartView. The user login entries will be audited with event d2_connect, and the logout entries will be
audited with event d2_disconnect, provided “D2 connection audit” is checked in D2-Config under Tools-
>Documentum audit. An example of an audit entry is given below:

event_n

ame

string_1 strin

g_2

string_3 string_4 string_5 attribute_list

d2_disco
nnect

D2Smart
View

HR client_ip=162.1
52.12.45

client_hostname=16
2.152.12.45

client_location=12.96267
0064190613,

77.64391671297456

network_location=India;sv_context_UUID
=AABH15664879AAP

string_1 value is taken from the request header: X-D2-CLIENT-TYPE
string_2 value is the application name which is taken from header: X-D2-APPLICATION-NAME

66

string_3 value is the client IP address.
string_4 value is the client hostname. If hostname cannot be resolved, then it is the same as string_3
string_5 is the location (latitude, longitude), which is picked from request header: X-CLIENT-LOCATION
Attribute list is a ‘;’ separated list of attributes. Currently it consists of a network location, which is picked
from request header: X-D2-NETWORK-LOCATION and a user-session-specific, globally unique identifier
(referred to as sv_context_UUID).

NOTE: Logout entry will not be created in case of session expiry on D2-SmartView.

Encrypted DM Ticket
D2-REST from 23.4 onwards provides the capability to fetch an encrypted DM-ticket via rest API dm-ticket
(Example: /repositories/{repositoryName}/dm-ticket). This can be achieved by giving the request param
‘secure’ as ‘true’.

D2 Column Preferences

D2 Column preferences PUT and GET APIs are enhanced to accept and return d2_sv_widget_state and
d2sv_width as input and output respectively. Definitions of these two attributes are as follows.

 d2_sv_widget_state:

{
"table_mode": GRID/LIST/PINNED;(This indicates the mode of the table and there are three
possible modes GRID/LIST/PINNED)
"page_size": N, (It’s an integer value which indicates the items per page such as 30, 50, 100 etc.)
"left_panel": DEFAULT/TREE/FACET/QUERYFORM (This indicates how the left panel to be displayed.
It has three possible values DEFAULT/TREE/FACET/QUERYFORM).
show all version: true/false (This is Boolean value and indicates whether to show all versions or not.
false means don't show, and true means show)

"filter": filter name (The name of the active filter which needs to be set)
}

"d2sv_width":123 (An integer value which indicates the width of the column.)

d2-column-preferences GET API

 This D2-REST API (link-rel: http://identifiers.emc.com/linkrel/d2-column-preferences) is used for getting
the user widget column preferences and is enhanced in 23.4 to return two new
attributes, d2_sv_widget_state and d2sv_width, in the response.

http://identifiers.emc.com/linkrel/d2-column-preferences

67

d2-column-preferences PUT API

 This D2-REST API (link-rel: http://identifiers.emc.com/linkrel/d2-column-preferences) is used for
updating the user widget column preferences and is enhanced in 23.4 to accept two new
attributes, d2_sv_widget_state and d2sv_width, in the request payload.

D2 Options API

The D2-Options API (link-rel.: http://identifiers.emc.com/linkrel/d2-options) is an API that lists general D2
option configurations like max file upload size, allowed file extensions, etc. This API has been updated in 23.4
to include default date formats, default datetime formats, and default datetime input formats. Users can use
these settings to update their date time preferences.

User Preferences

Logged in user preferences (link-rel.: http://identifiers.emc.com/linkrel/d2-preferences) can be updated
using the user preference API. Starting in 23.4, this API can be used to update user date time preferences
(which can be fetched using the above mentioned D2 options API).

Collections
Collections are assemblies of documents, forms, cabinets, or folder locations that provide quick access that
enable users to perform their work. The following are the REST APIs developed to create and manage
collections.

Removing items from a collection:
This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/collection-items) (DELETE) is used to remove
objects from a collection. In the request body, you can pass the chronicle IDs of objects to be removed from
the collection.

Sample payload for request body:
{

 " items_chronicle_id": [

 "id1",

 "id2"

]

}

Fetching objects from a Collection:
This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/collection-items) (GET) is used to fetch the number
of results based on preconfigured value for maxResultSetSize in D2FS.properties. This REST endpoint will

http://identifiers.emc.com/linkrel/d2-column-preferences
http://identifiers.emc.com/linkrel/d2-options
http://identifiers.emc.com/linkrel/d2-preferences
http://identifiers.emc.com/linkrel/user-defined-collection-items%22
http://identifiers.emc.com/linkrel/user-defined-collection-items

68

always fetch the latest version of the objects present in the collection. It supports filter config name and it is
used to apply the filter criteria to this API results. Pagination and sorting is supported. Sort will be applied on
all results for dm_sysobject attributes but for custom attributes and dictionary values, sort will be on
paginated results only. Below are request parameters can be passed in the URI.
widget-name=WG Favorites&links=true&inline=true
widget-name : widget-name is used to fetch column preferences
links : Boolean value to indicate if linkrels are to be returned in the response.
inline: Boolean value to indicate if all the attributes are to be returned.
sort=<column name> <sort order>
filter=<column name>=<filtervalue>
include-total: Boolean value to indicate Pagination support

Creation of a Collection:
The create collection REST endpoint is used to create a collection (link rel.:
http://identifiers.emc.com/linkrel/my-collections). This REST endpoint is used to create an empty collection
or a collection with objects by passing object IDs in the request body. This REST endpoint restricts users from
creating a collection with the same name.

Sample payload for request body:

1. Creating an empty collection.
{

 "properties": {
 "object_name": "collectionName",
 }

}
2. Create a collection and add objects to it.

{

 "properties": {

 "object_name": "collectionName",

 "items_object_id": ["id1","id2"]

 }

}

Deleting a collection
This REST endpoint is used to delete a collection (link rel.: http://identifiers.emc.com/linkrel/collection)
(DELETE). The r_object_id of the collection to be deleted should be passed in the URI path.

http://identifiers.emc.com/linkrel/user-defined-collections
http://identifiers.emc.com/linkrel/user-defined-collections

69

Renaming a collection
This REST endpoint is used to rename the existing collection (link rel.:
http://identifiers.emc.com/linkrel/collection) (PATCH). The r_object_id of the collection to be
renamed should be passed in the URI path.

Sample payload for request body:

{

 " properties": {

 "object_name": “New Collection name”,

 }

}

Fetching collection complete information
This REST endpoint is used to fetch the collection information including a list of inaccessible items
of that collection. Inaccessible items may includes items that are deleted or items that the user no
longer has access to (link rel.: http://identifiers.emc.com/linkrel/collection) (GET).The r_object_id
of the collection to get complete information should be passed in the URI path.

Moving collection items from one collection to other:

This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/collection-items) (POST) is used to move

collection items from one collection to another collection. The r_object_id of the collection to move to

another collection should be passed in the URI path.

Sample payload for request body:

{

 " items_object_id": [

 "id1",

 "id2"

],

“move_from_collection”: <id of source collection>

}

http://identifiers.emc.com/linkrel/user-defined-collections
http://identifiers.emc.com/linkrel/user-defined-collections
http://identifiers.emc.com/linkrel/user-defined-collection-items%22

70

Adding objects to an existing collection

This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/collection-items) (POST) is used to add

objects to an existing collection. In the request body, you can pass multiple object IDs that are to be added

into a collection. This REST endpoint does not allow users to add an existing object of the same or different

version to a collection.

Sample payload for request body:

{

 " items_object_id": [

 "id1",

 "id2"

],

“move_from_collection”: <>

}

Fetching list of collections
This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/my-collections) (GET) will fetch all the
collections accessible to the user. Collections will be sorted by last modified date(r_modify_date) in
descending order by default.

NOTE: While fetching collections, the user should pass query param page as -1 as a query param to get a list
of all collections. This is mandatory as currently pagination is not implemented for this API. If page=-1 is not
passed, an error response will be sent with the code E_PAGE_NO_MISSING.

Share Collections
Shared Collections are the collections that are shared to a user or group by the owner of the collection. The
following are the REST APIs developed to create and manage shared collections.

Fetching list of recipients to share collections with:
This REST endpoint (link rel: http://identifiers.emc.com/linkrel/collections-eligible-recipients-for-share) (GET)
will fetch a list of all users and groups to share collections to by default.

Instead of returning all the users and groups a query can be configured in D2-Config, under a widget of type
'CollectionWidget'. For this query to be executed you need to pass the widget name using 'widget-name'
query parameter. If the results returned by query are not of type 'dm_user' or 'dm_group' then an error will
be thrown.
If the widget name is NOT passed then ALL the results are returned.

http://identifiers.emc.com/linkrel/user-defined-collection-items%22
http://identifiers.emc.com/linkrel/user-defined-collectionss
http://identifiers.emc.com/linkrel/user-defined-collectionss

71

Fetching list of shared collections
This REST endpoint (link rel: http://identifiers.emc.com/linkrel/collections-shared-with-me) (GET) will fetch all
the shared collections accessible to the user. Shared Collections will be sorted by last modified
date(r_modify_date) in descending order by default.

NOTE: While fetching collections, the user should pass the query param page as -1 as a query param to get a
list of shared collections. This is mandatory as currently pagination is not implemented for this API. If page=-1
is not passed, an error response will be sent with the code E_PAGE_NO_MISSING.

Share or Unshare Collection:
The REST endpoint is used to share collection or unshare collection to any user/group. (link rel:
http://identifiers.emc.com/linkrel/share-collection)(PUT) .This REST endpoint will take updated list of
users/groups info and update collection.

sample payload for request body:

{
 "users_and_groups": [
 {
 "recipient_id": "id",
 "recipient_name": "UserName",
 "recipient_role": "reader",
 "recipient_type": "user"
 },
 {
 "recipient_id": "id",
 "recipient_name": "groupName",
 "recipient_role": "reader",
 "recipient_type": "group"
 }

]
}

Fetching shared details of collections:
This REST endpoint (link rel: http://identifiers.emc.com/linkrel/share-collection)(GET) will fetch all the users
and groups that the collection shared with. The r_object_id of the shared collection should be passed in the
URI path.

http://identifiers.emc.com/linkrel/user-defined-collectionss
http://identifiers.emc.com/linkrel/user-defined-collections
http://identifiers.emc.com/linkrel/user-defined-collectionss

72

Business Administration

Admin users can now define users as BAs (Business Administrators). Follow the configuration directions given
in the D2 Administration Guide to setup a user as a BA. An Admin can also configure multiple landing pages
for users, including BA users. For a BA user, one landing page can have widgets and tiles related to the logged
in user’s normal everyday functionality, and the other landing page can contain widgets specific to BA related
functionality. When logging in, a BA user can switch to either landing page.

If the logged in user has more than one landing page configured, they can choose to store their default
landing page in preferences (use attribute: sv_landing_page).

The actions that a BA user can perform on objects not owned by them are limited to the list of BA actions in
the applicable BA action config in D2-Config. For example - If a BA user wants to cancel checkout on an object
on which the lock was acquired by some other user, then the BA action config (applicable to this BA user) will
determine if the BA can perform cancel checkout on the object. Similarly, for Workflows the BA can perform
actions such as PAUSE or RESUME only if BA action config allows him to do so.

All Actions performed by a BA (Pause Workflow, Cancel Checkout, Resume Workflow, Change Workflow
Supervisor and Abort Workflow) are audited in dm_audit. The audit event names are given below:

S.no. Action Audit event name

1 WF Pause d2_ba_workflow_halted

2 WF Resume d2_ba_workflow_resumed

3 WF Abort (i.e. HALT) d2_ba_workflow_aborted

4 Cancel Checkout d2_ba_cancel_checkout

5 Update WF Supervisor d2_ba_workflow_update_supervisor

* Multiple workflows related D2-REST endpoints now support AdminWorkflowWidget name (widget
introduced in 24.2. More details can be found in the D2 Administration Guide) apart from
WorkflowOverviewWidget name. The Swagger documentation for such D2-REST endpoints has been
updated.

Get all checkout out objects.
 This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/d2-all-checked-out-objects) (GET) fetches
all the checked-out documents as per the query configured in AdminCheckedOutDocumentWidget. This

http://identifiers.emc.com/linkrel/d2-preset-profile

73

query is constructed using DQL content and minimum permit level configured in the widget. If no query is
configured, then the API fetches all the checked out documents in the system.

Cancel checkout by Business Administrator
This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/checkout (DELETE) cancels the document
checked out by other users. Before cancelling the document, it first evaluates the condition configured in
“Business Admin Actions” for “Cancel checkout” action. If this action is evaluated to be true then it proceeds
to cancel or it throws an error to indicate action is forbidden.

Aviator
OpenText Content Aviator brings the power of generative AI and large language models (LLMs) into OpenText
content services platforms, including Documentum. An ideal scenario on how to use Aviator would involve
the following steps:

1. Get the Aviator Global Config. and Enable Aviator Global Config. (requires system admin or
superuser privileges)

2. List the Aviator enabled folders. (requires system admin or superuser privileges)
3. Enable Aviator on a folder. This has certain limitations like the number of documents in the

folder. This is a time taking process since each document inside the folder will be processed.
(requires system admin or superuser privileges)

4. Check if the Aviator is enabled on the folder.
5. Get the file count for the folder.
6. Once the documents are processed, select a document inside the folder and initiate the chat.

Enable/Disable Aviator on Folders
This D2-REST API (link-rel.: http://identifiers.emc.com/linkrel/aviator-marker) is used to enable/disable Aviator
on folders. The logged in user must be a superuser or a system admin to call this REST endpoint. This API can
be used to enable/disable Aviator on multiple folders at once. Refer Swagger for more information.

List Aviator enabled folders.
This D2-REST API (link-rel.: http://identifiers.emc.com/linkrel/aviator-enabled-folders) is used to list all the
Aviator enabled folders. The logged in user must be a superuser or a system admin to call this REST endpoint.
Any folder with dcis_folder_aspect Aspect attached and dcis_folder_aspect.embd_enabled=true
can be qualified as Aviator enabled folder. For the execution of this API refer Swagger documentation.

Chat on Aviator enabled folder.
This D2-REST API (link-rel.: http://identifiers.emc.com/linkrel/aviator-chat) is used for chatting on Aviator
enabled folders. There are 3 main request parts for the chat request: where, context and chat.
The “where” section will be very similar to the expression-set in the quick search, advanced search etc. But
here it will be limited to the minimal expression. For example, the simple value expression will only support
EQUAL operator. The context section will be empty for the initial chat and for subsequent chat it will use the

https://confluence.opentext.com/display/EDDTS/Cancel+checkout+by+Business+Administrator
http://identifiers.emc.com/linkrel/checkout
http://identifiers.emc.com/linkrel/aviator-enabled-folders
http://identifiers.emc.com/linkrel/aviator-enabled-folders
http://identifiers.emc.com/linkrel/aviator-chat

74

context from the response. The chat section should contain the actual chat query. For the question from the
user, the author key should be populated as user. The content should be question.
For the execution of this API refer to Swagger documentation.

Get Aviator Global Configuration
This D2-REST API is used to get the Aviator global configuration. As a part of this REST endpoint, it will
retrieve whether aviator is enabled or not, who enabled/disabled it, when was it enabled/disabled, the
embedding URL, and the chat URL. Link rel.: http://identifiers.emc.com/linkrel/aviator-configuration

Enable/Disable Aviator Global Config
This D2-REST API is used to enable or disable the Aviator service globally. System administrators and
Superusers will be able to enable or disable Aviator functionality in the Aviator dedicated UI screen. Link rel.:
http://identifiers.emc.com/linkrel/aviator-global-status

Check if list folders/documents are aviator enabled.
This endpoint will check if a list of folders/documents are aviator enabled or not. Link rel.:
http://identifiers.emc.com/linkrel/aviator-enabled-checker . For more details, refer to Swagger Documentation.

Filter Configuration

Get My Filter Configs
This D2-REST API is used to get filter configs applicable for the logged in user. This endpoint will fetch all the
matrix evaluated D2-Config filters. To fetch filter configs specific to a particular folder or custom extended
folder type pass the request parameter named folder_id, filter configs are evaluated based on type context. If
the folder id is not provided, then filter configs are evaluated based on user context mapping. When no filter
configs are mapped, All and Current configs are returned. Link rel.: http://identifiers.emc.com/linkrel/my-filter-

configs.

Filter config support in object facets API

The object facets API (link rel.: http://identifiers.emc.com/linkrel/object-facets) now supports filter config name.
This filter config name is used to apply the filter criteria to this API results. The end user should first fetch the
list of filter configs applicable to the logged in user. Then you can send this filter config name to the object
facets API to apply the filter. You can also choose to save this filter config name in your preferences. If a filter
config is not provided, the filter config present in this user’s preferences against the provided widget name
and type is applied.
If you do not pass the filter config name to this API or have any filter name configured in your preferences for
this widget-name and widget-type combination, then the first default config will be applied (from the list of
filter configs marked in user’s context + the list of filter configs marked in default context ordered by filter
config name).

http://identifiers.emc.com/linkrel/aviator-configuration
http://identifiers.emc.com/linkrel/aviator-global-status
http://identifiers.emc.com/linkrel/aviator-enabled-checker
http://identifiers.emc.com/linkrel/my-filter-configs
http://identifiers.emc.com/linkrel/my-filter-configs
http://identifiers.emc.com/linkrel/object-facets

75

If you do not pass the filter config name to this API or have any filter names configured in your preferences
for this widget-name and widget-type combination and have no default filter configs in your context or the
default context then the first config (from the list of filter configs marked in user’s context + the list of filter
configs marked in default context) is taken and applied.
If you do not pass the filter config name to this API or have any filter names configured in your preferences
for this widget-name and widget-type combination and have no filter configs in your context or the default
context then no filter is applied.

Fetching Facet data with Filter config

The following use case has been handled for processing facets with Filter Config.

1. If the active D2 Filter Config has a DQL criteria and if the resultant document list size is beyond maxRe-
sultsize then facets will not process and a flag ("facet-processed": false) will be returned to indicate
the same.

2. If the active D2 Filter Config has a DQL criteria and if the resultant list size is below maxResultsize then
facets will be processed, in this case "facet-processed" flag will be true.

3. If the filter criteria is empty, then facet will be processed irrespective of the resultant list size.

Note: maxResultsize for doc-list widget can be configured in D2-Config (under Maximum Results Filtering sec-
tion in Widget Config) or in D2FS.properties.

Sorting enhancement in object facets API

The object facets API now sorts attributes by executing DQL instead of Java In-memory sorting which was
done earlier.
Note: Sorting on repeating attributes is not supported and may return irrelevant data.

Filter config support in collection items API

The collection items API (link rel.: http://identifiers.emc.com/linkrel/user-defined-collection-items) now supports
filter config name. This filter config name is used to apply the filter criteria to this API results. If a filter config
is not provided, you apply the filter config present in the user’s preferences against the provided widget
name and type.

File Count
The file count API (link rel.: http://identifiers.emc.com/linkrel/file-count) fetches the file count for a particular
folder/cabinet. It takes a Boolean request param “descend “which determines if the count should be fetched
from sub-folders. If it is true, then the API will recursively fetch the file count from sub-folders. If false, then
only the immediate file count will be fetched. The default value is false.

http://identifiers.emc.com/linkrel/user-defined-collection-items
http://identifiers.emc.com/linkrel/file-count

76

Object specific permissions API.
There is a REST API which takes object-ids and permission-levels and checks if the object/s have that level
permission or not. There was a limitation for the GET endpoint, due to which from 24.2 we have added
another variant with POST endpoint. Here we take permission-level as request param. and the object-ids are
passed in the request body. Refer to Swagger Documentation for more details.

Retirement of RADL

D2-REST documentation was migrated to Swagger in 23.2.

Previously RADL documentation URL was:

http://<host>:<port>/<war_file_name>/static/d2-rest/radl/index.html

And now it’s changed to:

http://<host>:<port>/<war_file_name>/static/d2-rest/radl-deprecated/index.html

In the d2fs-rest-web (24.2) war file, the button D2 REST API Documentation >> is now changed to red color,
with tool tip text: RADL is now deprecated and obsolete. Please refer to swagger documentation.

Please note that starting in 23.4 Swagger is the official D2-REST API documentation and RADL is no longer
being updated. For API specs and details, please refer to Swagger.

D2 Objects Locations API

API Changes in D2 Locations:
This REST endpoint (link rel.: http://identifiers.emc.com/linkrel/d2locations) (GET) is modified in 24.2 to
retrieve folders and/or VD locations if a single object is passed in the request. For multiple objects, it only
retrieves folder locations. It accepts multiple objects in the request.

http://central.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.2.11/jaxb-impl-2.2.11.jar
http://central.maven.org/maven2/xalan/xalan/2.7.0/xalan-2.7.0.jar
http://identifiers.emc.com/linkrel/user-defined-collectionss

77

The object-ids of the object should be passed in the URI path and location_type can be passed in
URI, this is optional.

object-ids - The object id(s) of the object whose actions are required. One or more Object IDs can
be passed as part of this parameter. Object IDs can be passed in the format - ?object-
ids=0903684f80198367&object-ids=0903684f802c0eef

location_type=FOLDER|VD (New query param added in 24.2 to facilitate fetching of parent VD
locations)

If the value is set to FOLDER, then it retrieves the folder locations of the document.

If the value is set to VD, then it retrieves the Virtual Document locations of the document.

If the value is set to FOLDER|VD, then it retrieves both the Folder and Virtual Document locations
of the document.

If this query parameter is not passed in the request, it retrieves all the folder locations for the
document.

If the value of the location_type query param is set to 'VD' or 'FOLDER|VD' and multiple objects are
passed in the request, it throws an exception saying, 'Requested Locations for multiple objects is
not supported.'.

Audit Trails
Starting 24.2 it is mandatory to select Audit config for Recently Accessed widgets.

API Changes in Audit Trails
This existing REST endpoint (link rel.: http://identifiers.emc.com/linkrel/audit-trails)(GET) is modified in 24.2
to fetch all the Audit trails. audited_obj_id, all_versions, view, filter, sort can be passed in the URI path.
Audits specific to documents can also be retrieved by sending ‘audited_obj_id' query parameter. This API will
honor Audit configuration and other D2 config if audited_obj_id is sent either in filter or request parameter.
The below query params are used to pass in URI to fetch the audit trails.

filter - Results can be filtered by any attribute ex: filter = audited_obj_id eq '<object_id>' and contains
(event_name, ''<name>")

sort - Default sort order is by time_stamp. Results can be sorted ascending or descending order by any
attribute ex: sort=event_name desc

view - view=:all can be sent if all attributes are to be returned. view=<list of attributes> can be used to return
any specific list of attributes

audited_obj_id = Optional parameter when sent in request gets audit events specific to document. If
audited_obj_id is sent in request param, then it is assumed that filter will contain other fields than

http://identifiers.emc.com/linkrel/user-defined-collectionss

78

audited_obj_id. If audited_obj_id is not sent in request param and the filter contains 'audited_obj_id', then
all_versions request param is not considered.

all_versions - Request param to be used along with audited_obj_id to get Audit events of a document for all
versions. The default value is true.

Paging paramaters
 items-per-page - Number of items per page. If no pagination parameters are sent, 'rest.paging.default.size'
property configured in rest-api-runtime properties file is considered for page count. Items per page cannot
exceed 'rest.paging.max.size' property configured in rest-api-runtime properties
 page - Page number can be sent to retrieve respective page.
 include-total = true returns total count of Audits as per filter specified in URL

Send inline=true to fetch details of Audits

send links=true to get link rels

NOTE: Existing D2-Rest Audits API (/repositories/{repositoryname}/objects/{id}/audits) is deprecated in
24.2 Release.

Lifecycle (LC) development

LC API to fetch Lifecycle Config for the given transition
 This rest end-point is used to fetch Lifecycle Config, for a given transition , by accepting object ids and
transition target state. The Link Rel (http://identifiers.emc.com/linkrel/d2-objects-lifecycle-configs) can be
accessed in response of this LC API (/repositories/<repo>/d2-objects-lifecycle-configs).

LC API to initialize Lifecycle on a document (legacy flow)

The API must accept object id and target state of the transition. And make the state transition to the target
state. This flow is like D2 classic. PUT request on this resource will make the lifecycle transition to the target
state. The API will evaluate the entry conditions and transition conditions for each object before applying
lifecycle state transition. The Link Rel (http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state

) can be accessed in response of this LC API (/repositories/<repo>/d2-objects-lifecycle-state). The same API is
used to initialize the LC on the document using the target state value as the starting state of the LC. The API
will support esign , property page update and multi document flow in the future updates.

LC API to evaluate Entry conditions and transition conditions

http://identifiers.emc.com/linkrel/d2-preset-profile
http://localhost:8080/d2fs-rest-web-21.4.0/repositories/d2repo/d2-objects-lifecycle-state?inline=true
http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state

79

This LC API is used to evaluate the entry and transition conditions of document object(s) passed in the request and

then status is returned as the response for each object passed in the request. The API accepts multiple object IDs

and a target state. It returns the localized error message for each of the failure cases. The Link Rel
(http://identifiers.emc.com/linkrel/d2-objects-lifecycle-conditions-checker

) can be accessed in response of the LC API (/repositories/<repo>/d2-objects-lifecycle-conditions-checker) .

OTDS Support for Life Cycle Change State E-Signoff

When user initiates a D2 LC transition, if the state is configured to obtain users e-sig and if the new external user is

a member of the group defined for IDP external user; then the user that requires e-signature will need to see the

IDP electronic flow for e- signature panel and not the legacy D2 e-signature flow .
To support this , the following changes are made in the configuration for the LC API (/repositories/<repo>/d2-

objects-lifecycle-configs) :

API Changes in D2 Lifecycle Config Fetch
The changed Response detail (External Sign off)

url - This URL will be the OTDS login URL. Redirect URL should be appended to this URL by the UI.

Ex: http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authc

ontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EH

mdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui

nonce_token - This will be the unique id for the OTDS login request. The same value will be needed when e-sign off

for lifecycle change state

API Changes in LifeCycle Init | LifeCycle Apply API
The changed Request Body attribute (signoff-inputs) –
signoff_login - For OTDS authentication (ct-otds_token mode), the signoff_login will be empty
signoff_password - This should be the OAuth token that would be getting from the OTDS machine.
nonce_token - The nonce token is the unique id that will be getting from the LifeCycle Config API

D2 REST - As a user I should be able to send email to the list of users in
the email-list when lifecycle succeeds.
When the lifecycle action with send email is applied an email will be sent to the users available in the email-
list. This is the existing behavior in classic and the same feature parity is maintained between SmartView/Rest
and Classic when user applies the LC state change configuring "send email" action type for the selected the
LC. If Send Email Action Type is set in LC config as follows, then email will be sent to all the email ids
configured in selected "emailing list". If no emailing-list is configured for "send email" action, then we don’t

http://identifiers.emc.com/linkrel/d2-preset-profile
https://confluence.opentext.com/display/EDDTS/OTDS+Support+for+Life+Cycle+Change+State+E-Signoff
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui

80

do anything. The LC API that’s been used for this feature to work is repositories/d2repo/d2-objects-lifecycle-
state?inline=true. It calls the D2FS code and hence ‘send email’ action will work fine when LC is applied.

D2-Config: As D2 PMs we want to provide an OOTB default email
template that can be used for LC state changes send mail mailing list.
In some cases, especially when the bulk processing option for LC state changes is enabled and the processing
takes a long time, the user will need to be informed of the LC state outcomes via an email. In these cases, the
customer is expected to configure the LC state change to have a Send mail action and indicate a mailing list to
use. So as per this feature, sending email is for single as well as multiple file LC state change. It just depends
on the value of the action type “send email”. If it contains the "Default D2 Lifecycle State Change report"
emailing list, then an email notification with the report as per the mock in the Jira should be sent out
irrespective of whether its single file or multiple file LC state change. The LC API that’s been used for this
feature to work is repositories/d2repo/d2-objects-lifecycle-state?inline=true

LC API to apply LC state transition in homogenous flow with EC & TC
This LC API will accept array of object ids and target state of the transition. [along with e-sign, property bag
etc.]. And make the state transition to the target state. This Link REL (http://identifiers.emc.com/linkrel/d2-

objects-lifecycle-state) can be accessed in response of the LC API (/repositories/<repo>/d2-objects-lifecycle-
state).

LC API to honor mass update properties bag during LC state transition

The LC change state API will accept a property bag and update the properties of the objects. Properties bag is
a common set of properties which shall be applied to all the objects passed as an input to this API. This is a
list of individual object properties. The user will send a list of properties along with the object ids, which
he/she wants to update during the LC state transition. This API will accept Properties Bag/ Properties List. If
user passes both (Properties bag and list) API will respond with a proper error message. This Link REL
(http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state) can be accessed in response of the LC API
(/repositories/<repo>/d2-objects-lifecycle-state) .

LC state transition homogeneous flow asynchronously to send email

This API will accept array of object ids and target state of the transition. [along with e-sign, property bag etc.].
And make the state transition to the target state. For homogeneous and asynchronous lifecycle state
transition "/d2-objects-lifecycle-state" API will send mail to the Email List config as configured in LC
configuration in D2-Config. To make the LC config Asynchronous and Set the summary mail config, in Life
Cycle Config Mark Allow Bulk transitions and Skip UI processing and set the Summary mail config. This Link

https://confluence.opentext.com/pages/viewpage.action?pageId=525575155
http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state
http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state
https://confluence.opentext.com/display/EDDTS/LC+API+to+honor+mass+update+properties+bag+during+LC+state+transition
http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state
https://confluence.opentext.com/display/EDDTS/LC+state+transition+homogeneous+flow+asynchronously+to+send+email

81

REL (http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state) can be accessed in response of the LC API
(/repositories/<repo>/d2-objects-lifecycle-state)

Lifecycle API to evaluate homogeneous flow

This API will evaluate whether the requested Lifecycle state transition is homogeneous or not. The API must
accept multiple object ids and a target state. It must evaluate if the transitions requested constitute a
homogeneous flow or a heterogeneous flow. It must also return for each object id the Link REL for the LC
config API. This Link REL (http://identifiers.emc.com/linkrel/d2-objects-lifecycle-configs) can be accessed in
response of the LC API (/repositories/<repo>/d2-objects-lifecycle-configs).

Menu action label is required as part of config data for LC

In Smart UI menu label name is showing as dialog title for confirmation view and property page view. When
the user performing heterogeneous LC, multiple configurations have different menu labels, user want to see
proper menu label name as title for each file. This Link REL (http://identifiers.emc.com/linkrel/d2-objects-

lifecycle-configs) can be accessed in response of the LC API (/repositories/<repo>/d2-objects-lifecycle-
configs).

D2-REST: As D2 Admin I expect user to see a single e-sig dialog & IDP
login during multi-file LC state change actions if user is using external IDP
when LC state change requires e-signature.
Initially , When user initiates a multi-file D2 LC transition, if the files share the same LC state change
configuration and if the state is configured to obtain users e-sig, and the user is required to use an external
IDP for e-signatures, then the user will only be asked to provide e-sig once for all the documents electronic
signature panel in runtime D2SV UI. So as per this feature, following changes are made in the configuration:

API For D2 Lifecycle Config Fetch
Following changes are done for the API /repositories/<repo>/d2-objects-lifecycle-configs

url - This URL will be the OTDS login URL. Redirect URL should be appended to this URL by the UI.

Ex: http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=l

ogin&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tq

EJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui

nonce_token - This will be the unique id for the OTDS login request. The same value will be needed when e-
sign off for lifecycle change state

http://identifiers.emc.com/linkrel/d2-objects-lifecycle-state
https://confluence.opentext.com/display/EDDTS/LifeCycle+API+to+evaluate+homogeneous+flow
http://identifiers.emc.com/linkrel/d2-preset-profile
http://localhost:8080/d2fs-rest-web-21.4.0/repositories/d2repo/d2-objects-lifecycle-state?inline=true
https://confluence.opentext.com/display/EDDTS/Menu+action+label+is+required+as+part+of+config+data+for+LC
http://identifiers.emc.com/linkrel/d2-preset-profile
http://identifiers.emc.com/linkrel/d2-preset-profile
http://localhost:8080/d2fs-rest-web-21.4.0/repositories/d2repo/d2-objects-lifecycle-state?inline=true
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui
http://otds.otblr.com:6060/otdsws/login?response_type=id_token&client_id=otblr_d2rest&prompt=login&authcontext=sign&scope=openid&nonce=MlCnP6fw0AF2UbO4eKxOPrA5bscuIPgC8f9qKTWDGq1tqEJbcWsX8JewqB_EHmdI&redirect_uri=http://d2vm.otblr.com:8080/d2sv/ui

82

API Details For LifeCycle Init | LifeCycle Apply API
Following changes are done for the API /repositories/<repo>/d2-objects-lifecycle-state

The changed Request Body attribute (signoff-inputs) : signoff_login - For OTDS authentication (ct-otds_token
mode), the signoff_login will be empty
signoff_password - This should be the OAuth token that would be getting from the OTDS machine.
nonce_token - The nonce token is the unique id that will be getting from the LifeCycle Config API

Installation Guide
Follow below guidelines for deploying REST .war depending on the app server.

WebLogic 12.1.3

Disable web service annotation scan for WebLogic

Append below line to Java options of WebLogic startWeblogic.bat file.

 -Dweblogic.servlet.DIDisabled=true

Since WebLogic has service provider hook for jaxb implementation, duplicate implementations for jaxb related jars

results in a linkage error. Follow the manual changes to the lib folder:

Remove following jar files from lib folder of deployment .war.

jaxb-api-2.1.jar

jaxb-impl-2.1.6.jar

jsr173_api-20060801.jar

stax-api-1.0-2.jar

stax2-api-3.1.1.jar

xml-apis-1.3.04.jar

xmlParserAPIs-2.6.2.jar

Download below jars and add to lib folder:

http://central.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.2.11/jaxb-impl-2.2.11.jar

http://central.maven.org/maven2/xalan/xalan/2.7.0/xalan-2.7.0.jar

WebSphere Installation instructions

1) Manually remove the 3 following .jar files from d2fs-rest-web.war/lib folder:

a) javax.servlet-api-3.0.1.jar
b) xml-apis-1.3.04.jar
c) xmlParserAPIs-2.6.2.jar

http://central.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.2.11/jaxb-impl-2.2.11.jar
http://central.maven.org/maven2/xalan/xalan/2.7.0/xalan-2.7.0.jar

83

1) Change the class loader order at Enterprise Applications > d2fs-rest-web_war > Manage Modules

> d2fs-rest-web.war class loader with local class loader first (parent last)

About OpenText
OpenText enables the digital world, creating a better way for organizations to work with information,
on-premises or in the cloud. For more information about OpenText (NASDAQ: OTEX, TSX: OTEX),
visit opentext.com.

Connect with us:
OpenText CEO Mark Barrenechea’s blog
Twitter | LinkedIn | Facebook

http://www.opentext.com/
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
https://www.linkedin.com/company/2709/
https://www.facebook.com/opentext

